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This article examines the construction of a criterion of the strength of the binder in 
composite materials reinforced with high-modulus fibers. The criterion is expressed in terms 
of averaged (macroscopic) stresses. The solution is obtained on the basis of analysis of a 
"cellular problem" [I] using hypotheses which consider the substantial difference between the 
stiffnesses of the reinforcing fibers and the binder. 

In the deformation of fiber composites most of the load is taken up by the high-modulus 
fibers [i]. The stress-strain state of the binder in this case can be determined by using an 
approximate model in which the soft binder "follows" the reinforcing fibers as a rigid frame- 
work which is deformed independently of the binder. An approach very close to this is widely 
used in studying unidirectional composites [2-4], where it leads to models that show satisfac- 
tory agreement with experimental results [5, 6]. 

We will examine a composite consisting of periodically alternating layers of fibers laid 
parallel to the plane Oxlx 2. The fibers are arranged parallel to each other within a given 
layer. The angle formed by the fibers of the ~-th layer with the axis Ox I will be designated 
as ~, ~ = i ..... M (M is the number of reinforcing layers comprising a period of the struc- 
ture of the composite). The reinforcement scheme just described is typical of composites 
made by winding or prepeg technology [7]. We will examine averaged deformations of the form 
eli, eis - 0 (i = i, 2). i.e., strains in the plane of the reinforcing layers. These are the 
strains of the greatest practical importance for the type of composite being considered. 

The problem of the deformation of a composite with the condition that the diameter E of 
the reinforcing fibers is small (~ << i) can be reduced to the solution of a problem of the 
theory of elasticity on a cell of the periodicity H in the structure of a composite [I, 8, 
9]. Specifically, if {eli} is the averaged strain tensor of the composite, the theory of 
elasticity problem should be solved with zero body forces and the boundary condition 

w--eiix~e~, a ~ ( w - - e i j x j e ~ )  p~iodici~ of H, (I) 

where w are displacements; an(u ) are the normal stresses responsible for u. 

Joining of the solutions of the elasticity theory problem with boundary condition (i) in 
the finite region Q gives the solution of the elastic problem for the composite as a whole 
with an error which approaches zero in W~(Q) at ~ ~ 0 [i]. In the case of an infinite region 
Q, joining of the elastic solutions with the boundary condition gives an exact solution of a 
periodic problem of elasticity theory corresponding to the mean strain {ei3} [9]. Our ex- 
amination is based on the hypothesis that local (microscopic) stresses {e~3} in the compos- 
ite - at least outside the edge-effect region - coincide with the stresses determined from the 
solution of the theory of elasticity problem with boundary condition (I). 

Note, i. The above applies to bodies of appreciable dimensions along all three axes. 
In the case of small plates, when the dimension of the body in the direction of the axis Ox S 
is also on the order of ~, formal asymptotic expansion leads to the auxiliary condition 

o~(w - -  eijxjei) = 0 (2)  

on the edges of the cell H perpendicular to the axis Ox S (condition of periodicity of w - 
eljxoe i is omitted in this case with respect to the variable xs). 

We will study a problem of the theory of elasticity with boundary condition (i), using 
the above model of rigid fibers in a flexible binder. The composites being examined are 
characterized by a ratio of stiffnesses of the components Ef/E >> i (Ez, E are the Young's 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, pp. 145-152, March-April, 1988. Original article submitted December I, 1986. 

298 0021-8944/88/2902-02985i2.50 �9 1988 Plenum Publishing Corporation 



Fig. i 

moduli of the fibers and binder). If this condition is satisfied, then we have af/~ ~ E~/ 
E >> I, where af and a are the characteristic stresses in the fibers and binder, respectively 
(assuming that stress concentrators are absent). In light of this, the stresses in the 
binder have no effect on the deformation of the fibers (more exactly, this affect is on the 
order of a/af << i, and we will ignore it, permitting an error on the order of E/El << I). 
The hypothesis for the fibers follows from this. 

I. The deformation of the reinforcing fibers (forming the disconnected framework) is 
determined independently of the binder. As regards the binder, due to the foregoing the 
fibers are perfectly rigid in relation to the binder (more exactly, they are "very" stiff, 
with a relative stiffness Ef/E >> i). There is ideal contact between the fibers and the 
bindar with respect to the displacements. This leads to the hypothesis for the binder. 

2. The strains of the binder are determined from the solution of the problem of the 
deformation of the elastic material which "follows" the rigid framework with specified dis- 
placements w of the latter. 

The above-described approach to constructing a model of rigid fibers in a flexible 
binder is mechanical in character. It is understood that this approach can be formalized~ 
By introducing the parameter Ef/E >> !, we arrive at problems of the "rigid expansion" type 
[I0] or of the type studied in [i]. The equations obtained on the basis of hypotheses I and 
2 and the methods in [i, I0] coincide. 

If boundary condition (I) is assigned, then the displacements of the reinforcing fibers 
lie in planes parallel to Ox1x 2. In conformity with the structure of the composite (alterna- 
ting layers of parallel-arranged fibers), the displacements are conveniently represented as 
the sum of the mutual displacements of the fibers within a reinforcing layer and the displace- 
ments of the layers themselves. 

Interfiber Strains of the Binder. We will examine the deformation of the components of 
a composite within the layer of reinforcing fibers. We begin with the special case eij= e116~/ 
8j~ (~,j = 1,2)~ which corresponds to the averaged tensile-compressive strain along the axis 
Ox I. Using hypothesis i, we find the strains are the framework formed by the reinforcing 
fibers. The displacements of the fibers are shown in Fig. i, where the light and dark lines 
represent the axes of the fibers before and after deformation. The displacements AA' and BB ~ 
are equal to enlOBl, where 21OB I is the size of a cell of the periodicity H along the axis 
Ox I. It follows from Fig. i that the fibers remain parallel in the case of deformation. 
Now, using hypothesis 2, we examine the deformation of the binder. We isolate the binder 
element OKLM in Fig. I. By virtue of hypothesis 2, the deformation of the binder - including 
the element OKLM - consists of its "following" the stiff fibers~ For the element OKLM, this 
means that it becomes the new element Ok2m. Here, the element has undergone deformation which 
can be represented as the sum of the tensile-compressive strain e~2 direction of the fiber 

in the direction and the tensile-compressive strain enn axis, the shear strains e~,enl, 
perpendicular to the fiber axis. Here and below, we use a local coordinate system in which 
the axis 2 coincides with the fiber direction in the reinforcing layer and the axis n is 
perpendicular to 2. The tensor eij(i , j = 2, n) is transformed by the standard method in 
changing over to the coordinate system Oxlx2. 

Let us calculate these strains of a binder element. 

i. The deformation of the reinforcing fibers in the direction of their axis (see Fig. i) 
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e I A a  I 
eft ~ = e n cos- q~a. 

"Following" the rigid framework, the binder element OKLM undergoes the same deformation in 
the fiber direction. 

2. Since, as noted above, fibers remain parallel to each other during the deformation of 

the framework, then e~nS = enzS = ~= (angle @a is indicated in Fig. I). We have tg~== IOAI§ 

Since we are interested in the linear (with respect to ell). Part of the strain and its 
corresponding small angle @a, then by a standard method we find from the last equality that 

~= ~tg~= = lOAl+IAal~[--~-[= ensin Tacos~= (here, we made use of the fact that IA'a] and 

]Aa[ have the order of en). 

3. The presence of nontrivial deformation of the binder enn~ is due to the fact that in 
the deformation of a cell of the periodicity H, the adjacent reinforcing fibers come closer 
to each other (see Fig. I). We will calculate the distances ]OS[ and ]OT[ between adjacent 
fibers before and after deformation. We will examine AOSC and AOTC, having the common hy- 
potenuse OC. It is evident from Fig. I that lOS[ = [OC]cos~=, while ]OTI = [OC]cos (~=--~=). 
Then lOT I -- lOS I ~ ~=]OC I sin T=. Here, in the expansion cos (~= -- ~=) , we retain a term which 

e ~ _ r ocl s i n ~  
is linear with respect to ~ and, thus, to e n. Then nn-- l O S [  = e 1 1 s i n 2 ~ "  

I n  sum,  we f i n d  t h a t  f o r  a v e r a g e d  d e f o r m a t i o n  e i j =  eu6i18 n (i, ] =  1 , 2 ) . ,  t h e  l i n e a r  ( w i t h  
respect to en) deformation of the binder element located between adjacent reinforcing fibers 
in a given reinforcing layer is equal to 

e~! e n c o s 2 ~ ,  e ~ I n  = e n !  = e l l  s i n  ~ u  c o s ~  a ,  e ~ - -  n n  - -  el1 s i n ~ a  ( 3 )  

(we note the coincidence of Eqs. (3) with the formulas for transformation of tensors in a 
rotation of coordinate axes. This considerably simplifies subsequent calculations). 

Using solution (3) for the case eij= e11~1~j1(~,] = I, 2) , we easily find the local strains 
of the binder with specification of an arbitrary averaged strain e~j, e~3 = 0 (i = 1,2). In fact, 
the case of averaged tension-compression in the direction of the Ox 2 axis reduces to the 
above-examined rotation of coordinate axes through 90 ~ , while the case of averaged shear in 
the plane Oxlx 2 reduces to the sum of two axial tension-compressions e12 in the coordinate 
system rotated through 45 ~ . Let us present the final expression for the local strains of the 
binder between adjacent fibers of a reinforcing layer (to do this, it is convenient to use 
the note made in regard to Eq. (3)): 

eu = e l l  c o s 2 ~  + 2e12 s in  ~ cos ~a  + e~2 sin2Ta, 

e ~  = e ~ ~z = (e22 - -  e l l )  s in  ~ cos ~a + e n (eos2~a - -  s i n ~ ) ,  ( 4 )  
E 

e n n  = e n s i n " ~  - -  2e12 s in  ~ cos ~ + e22 cos2~a. 

Here and below, the superscript e denotes local stresses and strains. 

Interlayer Deformation of the Binder. Now we will examine an element of the binder 
located between adjacent layers of reinforcing fibers with the indices a and a + i. Being 
deformed in a cell of the periodicity H, the binder element experiences a strain equal to the 
sum of the strain of a cell of periodicity g on the average eij , ei3 = 0 (i = i, 2) and the 
strain due to the relative displacement of the fibers of the adjacent a-th and (a + l)-st 
reinforcing layers. 

Let us calculate the latter strain. To do this, we examine the deformation of a binder 
element connecting the fibers of adjacent reinforcing layers (Figs. 2 and 3). We begin with 
the special case eij= en6~6~(i,] ~ 1,2). Figure 2 shows the axes of the fibers of the ~-th and 
(a + l)-st layers before and after deformation. The isolated binder element connects fibers 
OB and FD at point E (in the undeformed state). Point E is common to fibers OB and FD. Let 
us see where point E goes on fibers OB and FD during the deformation of a cell of periodicity 
~. It is evident that in this case the displacement vector of the points of the fibers OB 
and FD is parallel to the Ox I axis. We find its value at point E for fibers OB and FD. For 
the fiber FD, we find from the similarity of AFEe and AFDD' that the displacement of point E 
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i s  i E e r D R = t D D ,  []Fe[ ifD " Similarly, from the similarity of AOEe and AOBB' we find that the 

displacement of point E is IEeoBI=IBB'I[IO~-~,I. 

Let us examine AOKe, ~OLB' and AFNe, AFCD', It is not hard to see that IFel/]FD'i = 
IOKI/IOLI = iOel/[OB'l, from which (since IDD'I = IBB'I)we have iEe~I = IEe~l, i.e. the common 
point E on fibers OB and FD remains a common point during deformation of the cell ~ and 
becomes a certain points. Consequently, there is no mutual displacement of the fibers at the 
point of their attachment to the element. As a result the binder element lying between the 
fibers OB and FD undergoes only twisting caused by the rotations of the fibers during deforma- 
tion~ The angle of twist is equal to the change in the angle between the fibers OB and FD: 

T~ = ~ §  -- ~ = 5 ~  = el16(sin ~ cos ~a) (5) 

(5 is the operator for taking the first difference; 5/e = /~i--/=). In obtaining (5), we 
used the expression employed above for the angle of rotation of the fibers ~. 

Using the solution (5) for the case eii= en6~16jl (tension-compression along the axis 
Oxl) , we easily find an expression for the angle of twist of a binder element lying between 
fibers of adjacent reinforcing layers for an arbitrary strain eli, e• = 0 (i = I, 2). To do 
this, it is sufficient to execute the above-noted rotations of the coordinate axes through 
angles of 90 and 45 ~ . We finally obtain 

r~ = (ell  __ e22)5(sin ~ cos ~=) + el=6(eos~r - -  s i n ~ ) .  ( 6 )  

Note 2. The problem of the torsion of the binder element depicted in Fig. 3a is solved 
only by numerical means. At the same time, it is possible to suggest a simple theoretical 
scheme for a composite which will make it possible to calculate the maximum interlayer stres- 
ses in the binder. The angle of twist of the binder element per unit length does not exceed 
T=/Aa(0), where h~(O) is the minimum distance between points of the fibers of the ~-th and 
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(a + l)-st reinforcing layers (Fig. 3b). The maximum angle of twist per unit length cor- 
responds to the maximum stresses in the twisted element. 

We will examine a theoretical scheme for a composite in which the angle of twist of the 
binder element per unit length is equal to the maximum value. The following condition should 
be satisfied for this to occur: the kinematics of the framework of reinforcing fibers remains 
the same, while the distances between the points of adjacent fibers is equal to ha(0). This 
condition is satisfied by the composite scheme (Fig. 4), in which the fibers have a rectang- 
ular cross section and are described around the corresponding initial fibers. The latter 
determine all of the geometric dimensions in Fig. 4. In particular, the distances between 
the fibers of the a-th and (a + l)-st layers in the theoretical scheme is equal to 
ha(O). 

Using the scheme described above, we can obtain the binder strength criterion in terms 
of the averaged stresses or strains of the composite (for the fibers, such a criterion can be 
obtained on the basis of the results in [I]). Let the material of the binder be described by 
the strength condition 

/ ( c ~ ) < o *  (7) 

{~i5]). As an example, we point out the widely used quadratic (f is a continuous function of 
strength condition 

8 o,. o t j o i j -  y (8 )  

Using Hooke's law for the material of the binder and Eqs. (4), (6), we find that in 
subjecting the composite to the averaged strain e~j, ei3 = 0(i = I, 2), the following local stres- 
ses develop in the binder: 

interfiber stresses within the a-th layer of reinforcing fibers 

E ~ on,~ = E ~ ve~0, = e l l  o~z ~ ( + "ve~nn), (enn + 
(o) 

s = as E s 
In nl 2 (t + v) etn, ai3 = 0 with i = l, n, 3 

~({ei~] are given in (3)); 

the interlayer stresses 
~ ~ E 

o~j = (en  + e22 + e33) (~ij -{- 2 (1 "-~ V) eij, 

(i, ]) = ( t ,  l) ,  (1, 2), (2, I),  (2, 2), (3, 3), ( 1 0 )  

13 31 (X2- -Z2)  8 =08 (Xl__Xl E) E Ta 2 (i + v) h a (0)' o2a a2 = 2 (l + v) h~(0) ~ 

where (xl E, x E) are the coordinates of the point E - the axis of rotation of the binder element 
shown in Figs. 2-4. Equations (I0) were obtained on the basis of the theoretical scheme in 
Fig. 4 and give maximum values of interlaminar stresses. 

Having inserted Eqs. (9) and (I0) into the binder strength condition, we arrive at the 
initial binder strength criterion in terms of the averaged strains. Here, insertion of Eqs. 
(9) and (I0) actually leads to strength criteria in the a-th layer of the binder: 

the criterion of the strength of the binder with respect to interfiber stresses 

/~(q)~, (e~j}) ~< o* ( l l )  

(the function fl is obtained by inserting Eqs. (9) into the binder strength condition (7)); 

the criterion of the strength of the binder with respect to interlayer stresses 

/2(?~, ?~+1, Xl, x~, { c o } ) ~ <  o* ( 1 2 )  

( t h e  f u n c t i o n  f2  i s  o b t a i n e d  b y  i n s e r t i n g  E q s .  ( 1 0 )  i n t o  ( 7 ) ) .  E q u a t i o n s  ( 1 1 )  a n d  ( 1 2 )  
explicity state the dependence of the strength conditions both on the averaged strains and on 
the reinforcement scheme (i.e. on the microstructure of the composite). 

Note 3. Using the averaged Hooke's law {oij}= {aijhz}{ekl) ({aijhl} is indicated in [i]), 
we can express the averaged strains {ei3} through the averaged stresses: {eij}= {Hijhl} {okl} 
({Hiik~ } = {aokz}-l). Insertion of the last expression into (ii), (12) gives us binder strength 
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criterion in terms of the averaged stresses. Allowing for the fact that ~oh~} depends on 
~ .... ,~M [i], we find the averaged strength criterion in the ~-th layer of the binder, 
corresponding to (i!) and (12), in terms of the averaged stresses: 

( 1 3 )  

T h e  averaged strength criteria of an arbitrary layer of the binder were obtained above. 
It would naturally be convenient to have a similar strength criterion for the composite as a 
whole. With this in mind, we introduce the functionals 

M ( ~  . . . .  , <~,~, { ~ j } ) =  ma~ s ~  ( ~  . . . . .  ~M, { ~ } ) ,  
~ = I , . . . , M  

~,V(~ . . . . .  ~.~, { ~ } )  = m a x  f ~ ( ~  . . . .  .~ ~ ,  z .  z~, {~o}). ( 1 4 )  
g = l , . . .  ,2~1 

(~,~)  

I f  M ( %  . . . . .  %~, { o ~ } ) ~  ~* , t h e n  t h e  f i r s t  c o n d i t i o n  i n  ( 1 3 )  ( t h e  s t r e n g t h  o f  t h e  b i n d e r  i n  
interfiber stresses) is satisfied in all of the layers of binder. If M(% ..... tP.~z, {~u})> o*, 
then the inequality FI=*(% ..... ~5~, {air o*, is satisfied for a certain index a*, i.e., the 
strength condition of the ~*-th binder layer is violated (failure occurs in the layer with 
the number ~*). The same considerations apply in regard to the functional 7V(w~ ..... ~M, {ou}). 
It should be noted that in the case of satisfaction of the inequality N(% ..... ~, {~j})~-> o*, 
the conclusion of the failure of a certain layer of binder pertains to the theoretical scheme 
in Fig. 4. 

For composites in general, with allowance for Note 2, the condition N(% .... , (PM, {oil}) 
o* will be sufficient to preserve the integrity of the binder in regard to interlayer 

stresses. We thus obtain an averaged criterion of binder strength for the composite as a 
whole : 

in regard to interfiber stresses M(~ I .... ,~M, {OU}) ~O*, 

in regard to interlayer stresses N(% ..... %~, {ou} ) ~ a*. 

The functionals m(% ..... %~j, {eu}), n(% ..... %~r analogous to (14), can be obtained 
by replacing the functions FI~(% .... , q0M, {~i})~F2~(%, .-.,%v, X> x2, {~ij}) in (14) by the func- 
tions /i(~, {eij}), /2(q9~, ~=+i, x> x2, {eij}) As a result, we have the averaged criterion of binder 
strength for the composite as a whole in terms of averaged strains: 

in regard to interfiber stresses m ( %  . . . . .  q%~, { e l i } ) ~  a* ,  

in regard to interlayer stresses n(% ..... cp.~, {eu} ) ~ o*. 

As an example, we obtain the averaged strength criterion of the binder if we assign the 
strength condition of the binder in the form (8). Let us substitute (9) into (8). After 
grouping the terms, we find the binder strength criterion relative to interfiber stresses 

2 E 2 (t --  ~ + v 2) e ~ ~2 E ~ ~ ~ E 2 
- e ~  - - - - - - 7 7  <~ <~ 3 (1 - -  ~,2)2 (e~l + nn] 2 2V g2 U* (1 @ ~)2 ell 2 (t + 

({ei~} (i, ] = l, n) h a s  o b t a i n e d  i n  ( 4 ) ) .  M a k i n g  t h e  s u b s t i t u t i o n  ( 4 ) ,  we h a v e  t h e  s t r e n g t h  
c r i t e r i o n  i n  t h e  a - t h  l a y e r  o f  b i n d e r  r e l a t i v e  t o  i n t e r f i b e r  s t r e s s e s  
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2 E 2 ( t - v + v 2 )  E ~ 
3 0 -  v~) 2 (el~ + e22) 2 -  2 ~  [(e~l + e~)sin2q~ cos'~q~ + 

+ el~e~ (sinZq~= + cos~q~) + 2ene~  sinq~ cosq~ (sin~r - -  cos~'~) + 

+ 2e2~elz sin q~ cos q~ (cos ~ ~ - -  sin s q~) - -  4e~ sm q>~ cos ~ q~=] + 

E'Z 
--4- 2 (1 ~- v) " - - - - ' ~  ((e22 ~ en)  sin q~ cos q~a + e ~  (cos ~ r - -  sins q~))~ ~< ~*. 

(15) 

Having taken the maximum of the left side of (15) for a = i ..... M with fixed {ei3} we obtain 
the averaged strength criterion of the binder relative to interfiber stresses for the com- 
posite as a whole. 

We similarly find the averaged strength criterion relative to interlaminar stresses for 
the composite as a whole. Insertion of (I0) into (8) leads to the criterion of strength in 
the a-th layer of binder relative to the interlayer stresses 

E 2 E2 2 e 2 e ~ 
3 (~ + , ; )  (~ - 2,;) ( e~  + % + e~3) 2 -~ 4 C~ + ,;)2 ( e n  + ~ + 83) + 

E 2 
+ 2 (t + ~;)--'------'5 [(e2~ - -  eu) 6 (sin (p~ cos r + 

+ e~26 (cos ~ ~o~ - -  sin~ ~o~)1 ~ ( ~  - ~[)~ + ( ~  - ~ ) ~  < o*. 
h~ (o) 

(16) 

Having taken the maximum of the left side of (16) for ~ = i ..... M and (xl, x2) with fixed 
{eli} , we obtain the required result. Having used the averaged Hooke's law [i], we can write 
the averaged criteria in terms of the averaged stresses. 

Let us take a closer look at the strength criterion of the binder for interlaminar 
stresses (16). The last term in the left side of (16) contains the factor ( x l - - x~ )  ~ + (x~--x~) 2. 
Within the framework of the theoretical scheme in Fig. 4, the largest value of thisquantity 
is 2~.~(R is the radius of the reinforcing fibers). The scheme in Fig. 4 gives the maximum 
value~ of the stresses which develop in an actual composite. In this connection, satisfaction 

E 2  E 2  2 of (16), with the replacement of (x I- xl) + (x2--x2) by 2R , guarantees that the binder will 
not fail. 

Now we turn our attention to the fact that the combination [(xl--x[)=+ (x2--x~)~]/h~(O) is 
present in the left side of (16). This combination has the order R~/h~(O) (R is the radius 
of the reinforcing fibers, ha(0 ) is the distance between fibers in the theoretical scheme in 
Fig. 4). As a result, for reinforcement scheme characterized by the ratio 

h=(O)/R <, t (17) 

(and even more so for ha(0)/R << I), the strength criterion for interlayer stresses can be 
violated at low levels of external loads. For composites working with a prescribed average 
stress-strain state, this effect can be neutralized by selecting appropriate reinforcement 
schemes. The scheme chosen should minimize the modulus of the expression in square brackets 
in (16). This effect is related to the filler content of the composite. With an increase in 
the volumetric content of reinforcing fibers, conditions (17) must be satisfied and the 
strength of the binder decreases. 

Note 4. The preceding estimates were made on the basis of the theoretical scheme in 
Fig. 4. Let us examine a composite reinforced with fibers of circular cross section (Fig. 
3b). In this case, the distance between fibers h a =h=(0)(h=,0 are shown in Fig. 3b). The 
angle of twist of a binder element per unit length T=/h=(O) = ~a/(h= (0)~-R(l--cos 0)) (see Fig. 

3a). As can be easily verified, its maximum value is equal to Ta~/Z2h=(O)/R + h~(O)/R 2. It 

follows from this that the above-described effect is seen in this case as well. The volume- 
tric content of fibers at which the effect begins to be manifest is determined from the 
condition ha(O)/R~ I. This corresponds to a volumetric fiber content of about 60%. The 
maximum possible content of fibers of circular cross section in composites of the above-noted 
type is about 78%. 
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Note 5. The problem examined here is characterized by the presence of two parameters: 
<< ! and Ef/E >> i. The question of the range of application of a two-scale model was ad- 

dressed in [I]. It follows from [I] that the parameters ~, Ef, and E must be connected by 
the relation z2Ef,/E<<~ [i, p. 258], or e<< ~E-~-~f~ For composites with soft matrices, El/ 
E - 102-104 [2]. Then E << 10-I-10 .2 . Satisfaction of these relations is typical of the 
composites used in practice [2]. 
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